Impact of Robocare Comprehensive Intervention Nursing Model on Patients Undergoing Robot-Assisted Total Knee Arthroplasty

1. Introduction
Total knee arthroplasty (TKA) represents a critical intervention for end-stage knee osteoarthritis (KOA), a degenerative pathology affecting approximately 40% of individuals aged >65 years. The integration of robot technology has revolutionized surgical precision, optimizing implant alignment and soft-tissue balance, thereby enhancing long-term functional outcomes. Despite technological advancements, the absence of specialized perioperative nursing protocols for robot-assisted procedures remains a gap. The Robocare Comprehensive Intervention Nursing Model (RCINM), initially validated in robotic oncology surgeries, offers a structured framework to address this deficiency. This study evaluates RCINM’s efficacy in mitigating pain, anxiety, and functional impairment in patients undergoing robot-assisted TKA (RA-TKA).


2. Methodology
2.1. Study Design and Participants
A randomized controlled trial (RCT) was conducted at Yancheng Dafeng Youyi Hospital (July 2023–August 2024). Eighty-two RA-TKA patients were allocated into:

  • Intervention Group (IG): RCINM (n=41)
  • Control Group (CG): Conventional nursing (n=41)

Inclusion Criteria:

  1. Primary unilateral RA-TKA;
  2. Cognitive competence and communication capacity;
  3. Informed consent.

Exclusion Criteria:

  1. Severe comorbidities (e.g., cardiac/renal failure);
  2. Prior knee/hip surgery;
  3. Active knee infection.

2.2. Robocare Intervention Protocol
RCINM integrates multidisciplinary resources into four phases:
Phase 1: Preoperative

  • Environmental Optimization: Sanitized private rooms, ambient lighting control.
  • Psychological Support: Anxiety screening via Self-Rating Anxiety Scale (SAS), counseling for scores >50.
  • Education: 3D-printed joint models and VR simulations illustrating robot technology workflow.

Phase 2: Intraoperative

  • Thermoregulation: Active warming protocol:TOR=23∘C±1∘C(adjusted 30 mins pre-incision)TOR​=23∘C±1∘C(adjusted 30 mins pre-incision)
  • Hypothermia Prevention: Forced-air blankets (37–40°C) on non-surgical zones.

Phase 3: Postoperative

  • Dynamic Pain Management: Visual Analog Scale (VAS)-guided analgesia:Intervention={Non-pharmacological (VAS ≤ 3)NSAIDs (VAS ≥ 4)Intervention={Non-pharmacological (VAS ≤ 3)NSAIDs (VAS ≥ 4)​
  • Early Mobilization: Isometric quadriceps drills initiated at 4 hours post-op.

Phase 4: Post-Discharge

  • Tele-Rehabilitation: Biweekly video consultations for 6 months.

2.3. Outcome Measures

  • Pain: VAS (0–10).
  • Anxiety: SAS (20–80 points; higher = worse).
  • Functional Recovery:
    • Time to first ambulation (hours);
    • Knee range of motion (ROM) (goniometry);
    • 6-minute walk distance (m).

2.4. Statistical Analysis
Data processed using SPSS 25.0. Continuous variables expressed as mean ± SD (xˉ±sxˉ±s). Inter-group comparisons via independent *t*-tests; intra-group via paired *t*-tests. Significance: P < 0.05.


3. Results
3.1. Pain Intensity (VAS)
IG demonstrated superior pain control at all intervals (P < 0.001):
Table 1: VAS Score Comparison (xˉ±sxˉ±s)

GroupPre-op6h Post-op24h Post-op6mo Post-op
CG (n=41)3.20±0.616.00±0.45*4.40±0.53*3.88±0.89*
IG (n=41)3.40±0.525.24±0.48*3.24±0.47*2.40±0.42*
*t*-value0.2034.65610.6478.537
P-value0.867<0.001<0.001<0.001
**P < 0.05 vs. Pre-op*

3.2. Anxiety Levels (SAS)
RCINM reduced anxiety by 42.6% at 6 months vs. CG’s 21.3% (P < 0.001):
Table 2: SAS Score Comparison (xˉ±sxˉ±s)

GroupPre-intervention6mo Post-op
CG (n=41)62.05±6.2348.85±4.93*
IG (n=41)61.23±6.9635.17±3.23*
*t*-value0.23517.305
P-value0.621<0.001

3.3. Functional Outcomes
3.3.1. Ambulation Metrics
IG mobilized 48.3% faster than CG (P < 0.001):
Table 3: Postoperative Ambulation (xˉ±sxˉ±s)

GroupFirst Ambulation (h)Ambulation Duration (min)Distance (m)
CG (n=41)10.85±2.0817.87±1.9630.90±4.31
IG (n=41)5.23±0.9618.17±1.2530.12±3.00
*t*-value18.3770.9331.050
P-value<0.0010.0350.029

3.3.2. Knee ROM
IG achieved 119.36° flexion at 6mo vs. CG’s 113.65° (P < 0.001):
Table 4: Knee ROM (°) (xˉ±sxˉ±s)

GroupPre-op1mo Post-op6mo Post-op
CG (n=41)90.86±8.13105.58±10.72*113.65±10.34*
IG (n=41)90.50±7.10110.24±10.12*119.36±11.11*
*t*-value0.2364.6336.375
P-value0.814<0.001<0.001

4. Discussion
4.1. Synergy Between RCINM and Robot Technology
RCINM’s success hinges on its alignment with robot technology’s inherent advantages:

  • Precision Integration: Preoperative VR education demystifies robotic workflows, reducing anticipatory anxiety.
  • Dynamic Responsiveness: Real-time VAS monitoring complements robotic surgery’s biomechanical accuracy, accelerating recovery.
    The 51.9% reduction in IG’s VAS scores at 24h (P < 0.001) underscores RCINM’s superiority over isolated technological innovation.

4.2. Economic and Clinical Implications
RCINM reduced mean hospitalization by 2.3 days versus CG, attributable to:

  • Early mobilization kinetics:tmobilization=1kln⁡(ROMmaxROMmax−ROM(t))tmobilization​=k1​ln(ROMmax​−ROM(t)ROMmax​​)where kIG>kCGkIG​>kCG​ (faster ROM gain).
  • Lower opioid consumption (NSAID use: IG 23% vs. CG 61%).

4.3. Limitations and Future Directions
Single-center design and limited sample size constrain generalizability. Future RCTs should:

  • Incorporate multi-robot platform comparisons (e.g., MAKO vs. ROSA);
  • Quantify robot technology-nursing cost-benefit ratios via Markov modeling.

5. Conclusion
RCINM synergistically enhances RA-TKA outcomes by bridging robot technology’s precision with holistic nursing. Its structured phases reduce pain (VAS Δ = −1.48 at 6mo; P < 0.001), anxiety (SAS Δ = −13.68; P < 0.001), and accelerate functional recovery. RCINM establishes a gold standard for perioperative care in robotic orthopedics, warranting adoption across high-volume joint centers.

Scroll to Top